EAGE Self-Paced Courses
Learn New Knowledge at Your Own Pace!

Self-paced courses are offered on our Learning Geoscience platform and include pre-recorded video lectures and quizzes that you can complete with your own schedule over a set period. A certificate of attendance will be available upon completion of all course requirements.

Geostatistical Reservoir Modeling

Course description

Reservoir modeling provides a set of techniques to create three-dimensional numerical earth models in terms of elastic, petrophysical and dynamic properties of reservoir rocks. The course focuses on modeling of facies and rock properties from geophysical properties and on quantification of uncertainty of these models. Mathematical and physical models of the reservoir are generally uncertain due to the lack of information, noise in data measurements, approximations and assumptions. Hence, building a reservoir model requires the integration of several disciplines, such as seismic inversion, rock physics, and geostatistics. Seismic inversion aims to transform the measured seismic data into elastic parameters that can be interpreted to determine rock and fluid properties. Rock physics describes a reservoir rock by physical properties such as porosity and compressibility, that affect the seismic response in porous rocks. Rock physics aims to establish relations between these rock and fluid properties and the observed seismic data. Geostatistics aims to provide realistic representations of the reservoirs in terms of structure and spatial distribution of rock and fluid properties by combining geological knowledge and statistical methods. The course covers the fundamental theory of statistical methods for reservoir modeling and uncertainty quantification techniques for reservoir predictions. It is divided into four main parts: fundamentals of statistics, rock physics, geostatistics, and geophysical inverse problems for reservoir characterization. Uncertainty propagation from measured data, through physical models to model predictions will be studied with a focus on seismic data inversion and static reservoir characterization.


Dario Grana is an associate professor in the Department of Geology and Geophysics at the University of Wyoming. He received a MS in Mathematics at University of Pavia (Italy) in 2005, a MS in Applied Mathematics at University of Milano Bicocca (Italy) in 2006, and a Ph.D. in Geophysics at Stanford University in 2013. He worked four years at Eni Exploration and Production in Milan. He joined the University of Wyoming in 2013. He is author of the book ‘Seismic Reservoir Modeling’, published by Wiley in 2021. He is the recipient of the 2017 EAGE Van Weelden Award, the 2016 SEG Karcher Award, the 2015 Best Paper Award in Mathematical Geosciences, and the 2014 Eni award with Gary Mavko, Tapan Mukerji, and Jack Dvorkin for “pioneering innovations in theoretical and practical rock physics for seismic reservoir characterization”. His main research interests are rock physics, seismic reservoir characterization, geostatistics, data-assimilation, and inverse problems for subsurface modeling.

Carbonate Reservoir Characterization

Course description

This carbonate reservoir characterisation course focuses on the analysis of carbonate depositional textures and the subsequent diagenetic modifications as the main controls on the pore system evolution, heterogeneity and complexity.  The intricate inter-relationship of the depositional and burial history can be unravelled to allow the prediction of reservoir facies, and hence, aid reconstruction and development of three-dimensional reservoir models. This course demonstrates the value of understanding pore system evolution as a part of large-scale volumetric assessments and the development of carbonate reservoirs.

Reservoir quality in carbonate successions is often defined by the storage capacity, flow potential (ie. porosity and permeability respectively, measurements that are often acquired during conventional core analysis) and connectivity of pores (recorded as the pore-throat radius distributions during special core analysis).  The interplay between these quantifiable factors (including sample-scale heterogeneities) is inevitably linked to the original depositional characteristics of the carbonate sediments, together with their susceptibility to post-depositional diagenetic alteration, which results in the ultimately complex pore system.  Therefore, the classification of individual pore types will be detailed in this course, with their primary depositional or secondary diagenetic origin being discussed in context with sedimentological and stratigraphic models in order to underpin their spatial relationships and potential connectivity.  In addition, the characterisation of micrite textures will be discussed to illustrate their impact on the microporosity, factors that are particularly important to consider in tight unconventional reservoirs.

The depositional controls on reservoir properties that will be taken into consideration in this course include the texture, grain size, clay and matrix content as well as the type and quantity of allochems.  The relationship between dissolution processes that result in an enhancement of the pore system, cementation processes that reduce the pore volume and the resultant connectivity and fluid flow pathways will be assessed to constrain the dominant diagenetic controls on the reservoir properties.  In addition to this, the process of dolomitisation will be scrutinised in order to determine if and how this process enhances and/or reduces reservoir properties.

Integrating the key controls on reservoir quality within the sedimentological framework enables the establishment of a conceptual reservoir architecture model, which can be used to assess and predict the vertical and lateral variations in porosity and permeability at the reservoir and/or field scale.  This course outlines how to conceptually build a reservoir architecture model, which in turn can be used to aid reservoir modelling.


Laura is one of Badley Ashton’s UK-based senior carbonate reservoir geologists with an interest in carbonate petrography and sedimentology. She specialises in sedimentology, diagenesis and reservoir quality characterisation of limestones and dolomites in both conventional and unconventional reservoirs. She has wide experience in the Middle East, the USA, Europe and Africa. The projects she has been involved in cover a wide range of depositional environments from shallow to deeper water carbonates. Laura received his BSc, MSc and PhD at the University of Naples (Italy), with her PhD conducted in conjunction with Shell Italy. As an effective communicator and with a proven track record of excellent client care, past roles include Team Leader of the Carbonate Group, and local Business Manager and Consultant Geologist based in PDO’s offices, Muscat. Since her appointment as Regional Manager in August 2017, Laura oversees business activity in the Middle East, Africa and Asia, supported by regional Operations and Portfolio Managers. Laura’s other research interests include sedimentology and sequence stratigraphy of ancient and recent carbonate platforms and the characterisation of diagenetic processes affecting carbonate sediments with integration into the regional framework and influence on the pore system. She is currently involved in research on the diagenesis and pore volume assessment of Hyamm Formation in Oman in collaboration with the Ferrara University and Sultan Quaboos University, as well as a project focused on the role of hydrocarbons emplacement for calcite precipitation, in collaboration with Newcastle University. Laura has undertaken teaching of geological mapping, petroleum geology and reservoir quality evaluation at both BSc and MSc levels, while co-supervising a variety of BSc and MSc carbonate research projects.